Telegram Group & Telegram Channel
💠 Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

🌟 This Week's Presentation:

📌 Title:
A Cat Is A Cat (Not A Dog!): Unraveling Information Mix-ups in Text-to-Image Encoders through Causal Analysis and Embedding Optimization

🎙️ Presenter: Amir Kasaei

🧠 Abstract:
This work presents an in-depth analysis of the causal structure in the text encoder of text-to-image (T2I) diffusion models, highlighting its role in introducing information bias and loss. While prior research has mainly addressed these issues during the denoising stage, this study focuses on the underexplored contribution of text embeddings—particularly in multi-object generation scenarios. The authors investigate how text embeddings influence the final image output and why models often favor the first-mentioned object, leading to imbalanced representations. To mitigate this, they propose a training-free text embedding balance optimization method that improves information balance in Stable Diffusion by 125.42%. Additionally, a new automatic evaluation metric is introduced, offering a more accurate assessment of information loss with an 81% concordance rate with human evaluations. This metric better captures object presence and accuracy compared to existing measures like CLIP-based text-image similarity scores.

📄 Paper:
A Cat Is A Cat (Not A Dog!): Unraveling Information Mix-ups in Text-to-Image Encoders through Causal Analysis and Embedding Optimization

Session Details:
- 📅 Date: Tuesday
- 🕒 Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️



tg-me.com/RIMLLab/211
Create:
Last Update:

💠 Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

🌟 This Week's Presentation:

📌 Title:
A Cat Is A Cat (Not A Dog!): Unraveling Information Mix-ups in Text-to-Image Encoders through Causal Analysis and Embedding Optimization

🎙️ Presenter: Amir Kasaei

🧠 Abstract:
This work presents an in-depth analysis of the causal structure in the text encoder of text-to-image (T2I) diffusion models, highlighting its role in introducing information bias and loss. While prior research has mainly addressed these issues during the denoising stage, this study focuses on the underexplored contribution of text embeddings—particularly in multi-object generation scenarios. The authors investigate how text embeddings influence the final image output and why models often favor the first-mentioned object, leading to imbalanced representations. To mitigate this, they propose a training-free text embedding balance optimization method that improves information balance in Stable Diffusion by 125.42%. Additionally, a new automatic evaluation metric is introduced, offering a more accurate assessment of information loss with an 81% concordance rate with human evaluations. This metric better captures object presence and accuracy compared to existing measures like CLIP-based text-image similarity scores.

📄 Paper:
A Cat Is A Cat (Not A Dog!): Unraveling Information Mix-ups in Text-to-Image Encoders through Causal Analysis and Embedding Optimization

Session Details:
- 📅 Date: Tuesday
- 🕒 Time: 5:00 - 6:00 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/211

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Should You Buy Bitcoin?

In general, many financial experts support their clients’ desire to buy cryptocurrency, but they don’t recommend it unless clients express interest. “The biggest concern for us is if someone wants to invest in crypto and the investment they choose doesn’t do well, and then all of a sudden they can’t send their kids to college,” says Ian Harvey, a certified financial planner (CFP) in New York City. “Then it wasn’t worth the risk.” The speculative nature of cryptocurrency leads some planners to recommend it for clients’ “side” investments. “Some call it a Vegas account,” says Scott Hammel, a CFP in Dallas. “Let’s keep this away from our real long-term perspective, make sure it doesn’t become too large a portion of your portfolio.” In a very real sense, Bitcoin is like a single stock, and advisors wouldn’t recommend putting a sizable part of your portfolio into any one company. At most, planners suggest putting no more than 1% to 10% into Bitcoin if you’re passionate about it. “If it was one stock, you would never allocate any significant portion of your portfolio to it,” Hammel says.

RIML Lab from kr


Telegram RIML Lab
FROM USA